LETREUST LOIC – Groupe de Travail Guide d’ondes, milieux stratifiés et problèmes inverses (GOMS)

Carte non disponible

Date(s) - 27 avril 2017

Catégories Pas de Catégories

Title : Asymptotic expansion of eigenvalues for the MIT bag model Abstract : In this talk we present some spectral asymptotic results of the MIT bag model. This model is the Dirac operator, ?i? · ? + m?, defined on a smooth and bounded domain of R3 , ?, with certain boundary conditions. Specifically, ?i?(? · n)? = ? must hold at the boundary of ?, where n is the outward normal vector and ? ? H 1 (?, C^4 ). This model was developed to get a better understanding of the phenomenons involved in the quark-gluon confinement. We study the self-adjointness of the operator and describe the limiting behavior of the eigenvalues of the MIT bag Dirac operator as the mass m tends to ±?. This is a joint work with N. Arrizabalaga and N. Raymond.[