Séminaire Teich – 28 Janvier

Sergei Tabachnikov a suggéré une généralisation de la Conjecture de Birkhoff à des billards projectifs, qui implique aussi ses versions sur les surfaces à courbure constante non nulle: sphére et plan hyperbolique. Elle est formulée en termes duaux. Notamment, considérons une courbe C planaire convexe fermée dont un voisinage du côté extérieur est muni d’un feuilletage en courbes fermées (dont la courbe C est une feuille). Pour toute droite L tangente à la courbe C en un point P, considérons le germe d’involution de la droite L en P permutant ses deux points d’intersection avec chaque feuille individuelle. Supposons que cette dernière involution est une transformation projective de la droite L pour tout point P.
La Conjecture de Tabachnikov affirme, qu’alors la courbe C est une ellipse, et les feuilles du feuilletage forment un pinceau de coniques.
Dans l’exposé, nous en démontrerons la version rationnelle : sous l’hypothèse supplémentaire, que le feuilletage en question admet une intégrale première rationnelle.
Nous démontrerons un résultat analogue dans le cas ou la courbe C est un germe de courbe réelle ou complexe et on a un germe de feuilletage comme ci-dessus, ayant une intégrale première rationnelle. Dans ce cas général, la courbe C s’avère d’être toujours une conique. Mais les feuilles du feuilletage peuvent être des courbes algébriques de degré supérieure. Nous présenterons la classification complète de ces feuilletages à transformation projective près.