Fédération de Recherche des Unités de Mathématiques de Marseille - FR2291

CNRS AMU UAPV UTV

Rechercher




Accueil

25 mai 2018: 3 événements

séminaire

  • Le Teich

    Vendredi 25 mai 11:00-12:00 - no-reply@math.cnrs.fr

    Olga ROMASKEVICH - Séminaire Teich (TBA)

    Résumé : TBA https://romaskevich.carrd.co Olga ROMASKEVICH [

    Lieu : FRUMAM

    Notes de dernières minutes : http://www.i2m.univ-amu.fr/Seminaire-Teich?id_evenement=2340

    En savoir plus : Le Teich
  • Séminaire Signal et Apprentissage

    Vendredi 25 mai 14:00-15:00 - no-reply@math.cnrs.fr

    Marina KREME - Phase reconstruction for time-frequency inpainting

    Résumé : TBA Webpage Marina KREME [

    Lieu : CMI, salle de séminaire R164 (1er étage)

    Notes de dernières minutes : http://www.i2m.univ-amu.fr/Seminaire-Signal-et-Apprentissage?id_evenement=2295

    En savoir plus : Séminaire Signal et Apprentissage
  • Séminaire Signal et Apprentissage

    Vendredi 25 mai 14:00-15:00 - no-reply@math.cnrs.fr

    Sixin ZHANG - Statistical model of non-Gaussian process with wavelet scattering moments

    Résumé : One of the most challenging problems in statistical modeling is to define a minimal set of statistics so as to infer a stochastic model from few observational data of the underlying random process. We propose such set of statistics based on the wavelet scattering transform. Our goal is to model the non-Gaussianarity and the long-range interaction of the data, in particular when there is complex geometry and transient structures at multiple scales such as Turbulence. We follow the maximum entropy principle to infer a stochastic model given a set of statistical moment constraints. It results in a Gibbs distribution which is common in statistical physics to describe the equilibrium states. In this talk, I will discuss the current state-of-art methods to model the texture as a stationary and ergodic random process, including convolutional neural network based approach. We compare different methods quantitatively by estimating the power spectrum, and the entropy of the random process. Numerical results on isotropic Turbulence will be presented. http://www.di.ens.fr/ zhang/ Sixin ZHANG [

    Lieu : CMI, salle de séminaire R164 (1er étage)

    Notes de dernières minutes : http://www.i2m.univ-amu.fr/Seminaire-Signal-et-Apprentissage?id_evenement=2349

    En savoir plus : Séminaire Signal et Apprentissage