G.Comte – Fibres de Milnor motiviques en géométrie semi-algébrique réelle * Quand 27 septembre 2012 Ajouter au Calendrier Télécharger ICS Calendrier Google iCalendar Office 365 Outlook Live J’expliquerai un travail en commun avec Goulwen Fichou, qui consiste à mettre en place un anneau de Grothendieck $K_0(BSA_R)$ des formules semi-algébriques grâce auquel on peut définir, sur le modèle complexe, des fonctions zêta motiviques de singularités réelles. On montre que ces fonctions zêtas sont rationnelles et que leur expression rationnelle définit des fibres de Milnor motiviques des singularités réelles. Il s’agit d’éléments de l’anneau $K_0(BSA_R)\otimes Z[1/2]$ dont on montre qu’ils se réalisent, via le morphisme caractéristique d’Euler, sur la caractéristique d’Euler des fibres de Milnor ensemblistes correspondantes.